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Abstract
We present ExactLearner, a tool for exactly learning
and teaching EL terminologies. The learning protocol
follows Angluin’s exact learning model, where an ontol-
ogy engineer tries to identify an ontology by interacting
with a domain expert by asking queries. We implement
the learning process as a question-answer game between
two components of our system, the learner and the
teacher. We evaluate ExactLearner’s performance on EL
ontologies from the Oxford ontology repository and
demonstrate that despite the algorithm being exponen-
tial, it successfully terminates for small and medium
size ontologies. We investigate the impact of various
learner and teacher features and identify those most
useful for learning.

Introduction
Authoring ontologies is a laborious task that requires
a combined expertise of domain experts, who know
the vocabulary of terms used in a particular subject
area and have an understanding of the conceptual re-
lationships between them, and of knowledge engineers,
who can formalise these relations in an appropriate
ontology definition language. In (Konev et al. 2014;
2018) the dialogue between an expert and a knowledge
engineer is formalised as an instance of Angluin’s exact
learning framework in which a learner tries to exactly
identify an ontology by asking queries to the teacher,
seen as an oracle. It is assumed that the vocabulary of
terms is communicated directly to the learner and the
emphasis of the learning process is on identifying the
logical relations between the terms.
The contributions of this paper are twofold. First,

we build on results of (Konev et al. 2018) and give
an algorithm for learning EL terminologies, which is
exponential in the size of concept expressions and its
vocabulary but not in the size of the whole terminol-
ogy. This result complements previous results showing
that there is no polynomial time algorithm which can
exactly learn (even acyclic) EL terminologies (Konev et
al. 2014). We then introduce ExactLearner, a tool for
exactly learning and teaching EL terminologies, which
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contains an implementation of our learning algorithm
as well as a teacher. We evaluate ExactLearner’s per-
formance on EL ontologies from the Oxford ontology
repository (Oxford) and demonstrate that despite the
algorithm being exponential, it successfully terminates
for small and medium size ontologies. We investigate the
impact of various learner and teacher features and iden-
tify those most useful for learning. The missing proofs
can be found in the full version of this paper available
at https://exactlearner.github.io.
Related work. Most relevant to our work are: the
DL-Learner (Lehmann 2009), which learns concept ex-
pressions (but not ontologies) in various fragments of
description logic, using refinement operators; and sys-
tems based on the exact learning model, such as: Logan-
H (Arias, Khardon, and Maloberti 2007) for learning
function-free first order Horn sentences from interpre-
tations; and EIRENE (Alexe et al. 2011), for learning
schema mappings. For a more detailed discussion of
related work, see (Konev et al. 2018).

Preliminaries
Description logic. Let NC and NR be countably in-
finite sets of concept and role names. An EL con-
cept expression C is formed according to the rule:
C,D := A | > | C u D | ∃r.C, where A ranges over
NC and r ranges over NR. A (general) EL concept in-
clusion has the form C v D, where C and D are EL
concept expressions. An EL ontology is a finite set
of EL concept inclusions (Baader, Brandt, and Lutz
2005). We call an EL ontology O a terminology if for
all C v D ∈ O either C or D is a concept name and O
has at most one1 inclusion of the form A v C for every
A ∈ NC. ELlhs is the class of EL terminologies consisting
only of inclusions of the form C v A, while ELrhs only
of inclusions of the form A v C.
The size |C| of a concept expression C is the length

of the string that represents it, where concept names
1In the literature, the term terminology commonly refers

to sets of concept inclusions A v C and concept definitions
A ≡ C, with no concept name occurring more than once on
the left. As A ≡ C can be equivalently rewritten as A v C
and C v A, our definition is a natural extension of this one.



and role names are considered to be of length one. An
ontology vocabulary is the set of concept and role names
occurring in the ontology. The size of a concept inclusion
C v D, denoted |C v D|, is |C| + |D| and the size of
an ontology O, denoted |O|, is

∑
CvD∈O |C v D|. The

semantics of EL is defined as usual (Baader et al. 2003).
We write I |= α to say that a concept inclusion α is true
in I. An interpretation I is a model of an ontology O if
I |= α for all α ∈ O. O |= α means that I |= α for all
models I of O; and O ≡ O′ means that O |= α if and
only if O′ |= α for all concept inclusions α.

Subsumption learning framework. Given a class of
ontologies L (for example all ontologies in a particular
DL, EL terminologies etc), we are interested in the ex-
act identification of a target ontology O ∈ L by posing
queries to an oracle. We assume that the vocabulary of
the target terminology ΣO is known to the learner. A
membership query is a call to the oracle to test for an
inclusion C v D, where C,D are ΣO-concept expres-
sions of the DL under consideration, if O |= C v D. An
inclusion C v D is a positive example w.r.t. a target O
if O |= C v D and a negative example else. An equiva-
lence query is a call to the oracle to check if a hypothesis
ontology H is equivalent to the target O. If it is the case,
the oracle responds ‘yes’, otherwise the oracle returns a
positive example C v D with H 6|= C v D or a negative
example E v F with H |= E v F . Such a positive exam-
ple C v D (negative example E v F ) is called a positive
counterexample (a negative counterexample, resp.) to H
being equivalent to O. For a formal definition of the
subsumption learning framework and a discussion of how
this definition relates to Angluin’s exact learning model
see (Konev et al. 2018).

We say that a class of ontologies L is exactly learnable
if there is an algorithm, which halts for any target O ∈
L and computes, using membership and equivalence
queries, H ∈ L with H ≡ O. An ontology class is exactly
learnable in polynomial time if it is exactly learnable by
an algorithm A such that at every step2 of computation
the time used by A up to that step is bounded by
a polynomial p(|O|, |C v D|), where O is the target
and C v D is the largest counterexample seen so far.
ELlhs and ELrhs are known to be exactly learnable in
polynomial time, while the class of all EL ontologies is
not learnable in polynomial time (Konev et al. 2014).

Learning EL Ontologies
In this section we present Algorithm 1, which can exactly
learn EL terminologies in time exponential in |CO|, the
size of the largest concept expression in O, and |ΣO|,
the size of the ontology vocabulary, but not in the size
of the whole ontology.
In the main loop of the algorithm the learner poses

an equivalence query to the oracle. If the oracle answers
“yes” then the algorithm returns H equivalent to O.
Otherwise, it receives a counterexample C v D. It is easy

2We count each call to an oracle as one step.

Algorithm 1 The learning algorithm for EL
Input: An EL terminology O given to the oracle; ΣO

given to the learner
Output: An EL terminologyH computed by the learner

such that O ≡ H
1: Set H = {A v B | O |= A v B, A,B ∈ ΣO}
2: while H 6≡ O do
3: Let C v D be the returned positive counter-

example for T relative to H
4: Compute C ′ v D′ with C ′ or D′ in ΣO ∩ NC
5: if C ′ ∈ ΣO ∩ NC then
6: Compute a right O-essential α from

C ′ v D′ u
d

C′vF ′∈H
F ′

7: else
8: Compute a left O-essential α from C ′ v D′
9: end if

10: Add α to H
11: end while
12: return H

to see that at all times O |= H so the counterexample
is always positive.

As O is a terminology, complex C and D in the coun-
terexample can only “connect” via a concept name,
which can be identified by asking membership queries.
This is formalised by the following lemma, which is an
extension of Theorem 16 in (Konev et al. 2012) and is
proved by the canonical model construction.
Lemma 1. Given a positive counterexample C v D,
one can construct, by posing membership queries, a pos-
itive counterexample C ′ v D′ such that |C ′ v D′| ≤
|C v D| and either C ′ or D′ is a concept name in time
polynomial in |H|, |C| and |ΣO|.

Having transformed the counterexample to the case of
a concept name on the left or on the right, the algorithm
tries to minimise the size of the counterexample. If C ′
is a concept name then Algorithm 1 merges D′ with
the right-hand sides of all inclusions in H with C ′ on
the left (if they exist) and computes a so called right
O-essential counterexample. Otherwise, D′ is a concept
name, and the algorithm computes a left O-essential
counterexample. It then adds the resulting O-essential
concept inclusion α to H.
To explain the left and right O-essential counterex-

amples, following (Konev et al. 2014; 2018), we identify
in the obvious way each EL concept expression C with
a finite tree TC whose nodes are labelled with sets of
concept names and whose edges are labelled with roles.
Right O-essential concept inclusion α is computed
by applying exhaustively the following rules to A v C:
Concept saturation for O: If O |= A v C ′ and C ′

results from C by adding a concept name A′ to the
label of some node, then replace A v C by A v C ′.

Sibling merging for O: If O |= A v C ′ and C ′ is the
result of identifying in C two r-successors of the same
node then replace A v C by A v C ′.



Decomposition on the right for O: If d′ is an r-successor
of d in C, A′ is in the node label of d, and O |= A′ v
∃r.Cd′ plus A′ 6≡O A if d is the root of C, then replace
A v C by

(a) A′ v ∃r.Cd′ if H 6|= A′ v ∃r.Cd′ ; or
(b) A v C|−d′↓, otherwise, where
Cd is the concept corresponding to the subtree rooted
in d and C|−d↓ is the concept corresponding to the
result of removing the subtree rooted in d from C.

We illustrate the transformation rules with examples.
1. For H = ∅ and O = {Human v ∃hasParent.Human}

the oracle can return an arbitrary long hasParent
chain starting at Human as a counterexample, for
instance, Human v ∃hasParent.∃hasParent.> is a
chain of length two. With concept saturation, this
counterexample can be strengthened to Human v
∃hasParent.(Human u ∃hasParent.Human), which is
equivalent to O.

2. For O = {Human v ∃hasParent.(Human u Male)}
and H = {Human v ∃hasParent.Human}, upon re-
ceiving a counterexample Human v ∃hasParent.Male,
the learner merges its right hand side with the
right hand side of the inclusion in H to form
Human v ∃hasParent.Male u ∃hasParent.Human and
then strengthens it by sibling merging to form the
inclusion in O.

3. For H = ∅ and O = {Woman v Human,Human v
∃hasParent.Human}, even with concept saturation,
there exist infinitely many chain counterexam-
ples; Woman v Human u ∃hasParent.(Human u
∃hasParent.Human) is one of them. This inclusion
can be decomposed at the root into (a) Human v
Woman and (b) Human v ∃hasParent.(Human u
∃hasParent.Human). Picking either of them allows the
learner make progress.

Left O-essential concept inclusion α is computed
by applying exhaustively the following rules to C v A.
Concept saturation for H: If H |= C v C ′ and C ′

results from C by adding a concept name A′ to the
label of some node, then replace C v A by C ′ v A.

Decomposition on the left for O: If d is a non-root node
such that O |= C|−d↓ v A′, for some A′ ∈ ΣO, then
replace C v A by Cd v A′, otherwise, if O |= Cd v A′
and H 6|= Cd v A′, for some A′ ∈ ΣO, then replace
C v A by Cd v A′.

The applicability of a rule may depend on the application
of another rule. For example, for H = {∃hasParent.> v
Human} and O = H ∪ {∃hasChild.Human v Human}
a counterexample could be ∃hasChild.∃hasParent.> v
Human, which can only be decomposed on the left for
O if we apply concept saturation for H first.

Our proof of termination of Algorithm 1 and its com-
plexity bound is based on the following lemma. To sim-
plify the presentation we use ]O to denote |CO| · |ΣO|+1.

p # timouts avg CE avg max C
Test 2: 0.01 3 17.2 27.7

0.5 25 107.8 26.6
1.0 26 190.4 19.5

Test 4: 0.01 2 5.6 31.7
0.5 3 6.1 31.6
1.0 3 6.3 31.9

Table 1: Learner against the adversarial teacher.

Lemma 2. Given a positive counterexample C v D for
O relative to H, one can construct a positive counterex-
ample C ′ v D′ such that |C ′ v D′| ≤ ]O in polynomial
time in |C v D|, |ΣO| and |H|.

Since there are at most |ΣO|]O many inclusions over
ΣO of size ]O, at most |ΣO|]O counterexamples get added
to H over the run of the algorithm. Thus we obtain the
following theorem.
Theorem 1. The class of EL terminologies is exactly
learnable by Algorithm 1 in O(|ΣO|2|CO|·|ΣO|+2 · (|C v
D|)2) time, where ΣO is the vocabulary of the target
terminology O, CO is largest concept expression in O
and C v D is the largest counterexample seen so far by
the algorithm.

Concept saturation, sibling merging and decompo-
sition on the right are all essential—hence the name—
steps of the polynomial learning algorithm for DL-Lite∃R,
which extends ELrhs with inverse roles and role hierar-
chies (Konev et al. 2014; 2018). Indeed, Algorithm 1
polynomially learns ELrhs.
Theorem 2. ELrhs is exactly learnable in polynomial
time by Algorithm 1.

Evaluation
We have implemented our learning algorithm in the Ex-
actLearner system, available at https://github.com/
ExactLearner/ExactLearner, in Java using the OWL
API (Horridge and Bechhofer 2011) and the ELK rea-
soner (Kazakov, Krötzsch, and Simancik 2014). Ex-
actLearner has two main components: a learner and
a teacher.
The learner supports (1) “Concept Saturation”, (2)

“Sibling Merging”, (3) “Decomposition”, applied on the
right side of inclusions, and (4) “Concept Desaturation”,
(5) “Sibling Branching” and (6) “Decomposition”, ap-
plied on the left. Operations (1), (2), (3) and (6) have
already been described. In addition, we have also imple-
mented (4) and (5), which act as heuristics to construct
smaller, more informative counterexamples. Concept de-
saturation tries to remove concept names from nodes
in the left of counterexamples to make them logically
stronger. Sibling branching tries to strengthen a coun-
terexample by splitting paths on the left. For example,
for O = {∃hasDegree.BScu∃hasDegree.MSc v PG} and
H = ∅, the inclusion ∃hasDegree.(BSc uMSc u PhD) v



PG is a counterexample, from which desaturation re-
moves the irrelevant PhD and then sibling branching
strengthens it to the one in O.

We have evaluated ExactLearner’s performance on EL
ontologies from the Oxford ontology repository (Oxford).
As a first experiment we ran the learner against a naïve
teacher, which presents the target ontology inclusions
one by one without modification. This experiment aims
at estimating the overheads of the learning process under
the best possible conditions. In this first experiment,
for 50 out of 797 EL ontologies computations concluded
within 1 hour. We selected these ontologies for further
experiments. The selected ontologies range in size from 9
to 11 177 inclusions with signature sizes ranging from 23
to 9334 concept names and from 2 to 25 role names. The
average size of counterexamples produced by the teacher
was 5.48 while the average size of the largest concept in
O was 2.7. The average size of the largest concept in H
was 31.3, an increase caused by concept saturation on
the right side of inclusions. The performance bottlenecks
in our system are checking if the presented inclusion is
a counterexample w.r.t. the current hypothesis ontology
at the server side and entailment checks in the learner.

To further challenge the learner, we have introduced
an adversarial teacher, which forces the learner to apply
particular operations from (1)–(6) above by manipu-
lating the counterexamples. For instance, to force the
learner to perform concept saturation on the right of
A v C, the teacher exhaustively tries to remove concept
names from every node in the tree representation of
C, while ensuring that the modified inclusion is still
a counterexample. All in all, the adversarial teacher
can apply: (7) “Concept Desaturation” on the right,
which we have just described; (8) “Sibling Branching”
on the right, which weakens counterexamples of the form
A v ∃r.(C uD) into A v ∃r.C u∃r.D (provided the lat-
ter is still a counterexample); (9) “Concept Saturation”
on the left; and (10) “Sibling Merging” on the left, which
are the opposite of learner’s concept desaturation and
sibling branching. We also substitute concept definitions
into counterexamples, for instance, if A v ∃r.B is a
counterexample and B v C ∈ T we test A v ∃r.C for
being a counterexample as well. We call this operation
(11) “Composition on the right”. (12) “Composition on
the left” is its counterpart. Operations (7)–(12) are ap-
plied at random with set probabilities so that the level
of difficulty could be controlled.
Table 1 presents statistics of running the learner

against the adversarial teacher. In Test 2 the teacher
was applying transformations (7)–(12) with probability
p of 0.01, 0.5 and 1.0. The learner can cope with a small
distortion of examples (p = 0.01) but a significant distor-
tion leads to a big increase in the number of time-outs.
Figure 1 shows the percentage of the rules applied by
the learner in Test 2 for p = 0.01. As the chart indicates,
the most frequently applied rule (42%) is desaturation
in the left. This number grows to 94% when p = 0.5 and
to 96% when p = 1.0.
In Test 3 we have disabled rule (9) at the oracle

Figure 1: Usage of rules (1)–(6) by the learner.

Figure 2: Learning game after 2 queries.

side as well as rules (8) and (10) as they almost never
applied, see Figure 1, yet took up a significant time in
our tests. This led to a significant drop in the failure rate
even though other adversarial teacher operations were
applied with a high probability. This suggests that the
main cause of time-outs is the exponential explosion in
the size of the signature rather than the size of concepts
in the target ontology.
Playing with the Teacher. Our prototype teacher
component can also be accessed via a graphical interface
allowing a user to play the game of learning an ontology
by posing as few membership and equivalence queries as
possible. Fig. 2 presents a screenshot of the game after
2 queries.

Conclusion
We presented ExactLearner, a prototype tool for exactly
learning, and teaching, EL ontologies. We demonstrated
its applicability to small and medium size ontologies.
We identified the size of the ontology signature as the
main cause of the performance bottleneck.
As future work, we plan to transform our learning

algorithm in the Probably Approximately Correct with
membership queries setting, so that our algorithm can
also run without the teacher. We also plan to investigate
the complexity of exactly learning of EL terminologies
in the PAC learning setting under different probability
distributions.
Acknowledgements. We would like to thank Frank
Wolter for fruitful discussions and Liyi Zhao for her
contribution to an earlier version of ExactLearner.
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Proofs for Section
To show Lemma 2 we first need the following technical
lemma, which uses the canonical model of a concept
and an ontology. The canonical model IC,O of a concept
expression C and an ontology O is defined as follows.
If O = ∅, then we want IC,O to be TC (defined in the
Preliminaries) viewed as a tree-shaped interpretation
which we denote by IC rather than by IC,O. In detail,
the domain of IC is the set of nodes of TC and for all
A ∈ NC and all r ∈ NR:

d ∈ AIC iff A ∈ l(d), for all d ∈ ∆IC ;
(d, d′) ∈ rIC iff r = l(d, d′), for all d, d′ ∈ ∆IC .

We call the root ρC of TC the root of IC . If O 6= ∅, then
IC,O is obtained by extending IC so that the CIs in

O are satisfied. More precisely, IC,O is defined as the
limit of a sequence I0, I1, . . . of interpretations, where
I0 = IC . For the inductive definition of the sequence,
assume that In has been defined. Then obtain In+1 by
applying one of the following rules once:
1. if C v D ∈ O and d ∈ CIn but d 6∈ DIn , then take

the interpretation ID and add it to In by identifying
its root ρC with d. In more detail, assume that ∆In ∩
∆IC = {d} and d = ρC and define In+1 by setting,
for all concept names A and role names r:

∆In+1 = ∆In ∪∆IC ,

AIn+1 = AIn ∪AIC , rIn+1 = rIn ∪ rIC .

We assume that rule application is fair, that is, if a
rule is applicable in a certain place, then it will indeed
eventually be applied there. If for some n > 0 no rule is
applicable then we set In+1 = In. We obtain IC,O by
setting for all concept names A and role names r:

∆IC,O =
⋃

n≥0
∆In , AIC,O =

⋃
n≥0

AIn , rIC,O =
⋃

n≥0
rIn .

Lemma 3. Let O be an EL terminology. If O |= C v
∃r.F then either:
• C has a conjunct of the form ∃r.F ′ such that O |=
F ′ v F or;

• O |= C v A and O |= A v ∃r.F , for some A ∈ ΣO.
Proof. Let IC,O be the canonical model of C and
O. The interpretation IC,O has the following property
(which can be proved using the construction of IC,O):
† for any d ∈ ∆IC and EL concept expression of the
form ∃r.F : if there exists a homomorphism h from
the labeled tree corresponding to ∃r.F into IC,O such
that h(a∃r.F ) = d and all nodes in the labeled tree
corresponding to F are mapped to ∆IC,O \∆IC , then
there exists a concept name E with d ∈ EIC such
that O |= E v ∃r.F .
If O |= C v ∃r.F then by (†), there is a homomor-

phism h : I∃r.F → IC,O mapping the root of I∃r.F to
the root of IC,O. Let d be the node corresponding to
the child of ρ∃r.F . By construction of IC,O we have that
∆IC ⊆ ∆IC,O . We make a case distinction:
• h(d) ∈ ∆IC : let F ′ be the concept corresponding to

the subtree rooted in h(d). Then there is a homomor-
phism h : IF → IF ′,O. This means that O |= F ′ v F .
So C has a conjunct ∃r.F ′ such that O |= F ′ v F .

• h(d) 6∈ ∆IC : then, by construction of IC,O, there
is a concept name A such that ρ ∈ AIC,O , that is
O |= C v A, and O |= A v ∃r.F .

We split the proof of Lemma 2 into three parts:
Lemma 4 shows that given a counterexample α we can
compute a counterexample with size bounded by |α|
where one of the sides is a concept name; and Lemmas 5
and 6 show that given a counterexample of the form
A v C or the form C v A, respectively, one can compute
a counterexample with size bounded by |CO|+ 1.



Lemma 4. Given a positive counterexample C v D
for O relative to H, one can construct a positive coun-
terexample C ′ v D′ such that |C ′ v D′| ≤ |C v D| and
either C ′ or D′ is a concept name in polynomial time
in |H|, |C| and |ΣO|.
Proof. If (a) C is a concept name or (b) there is a
concept name A ∈ ΣO∩NC such that C v A is a positive
counterexample then we are done. If (b) is not the case
then:
‡ for all A ∈ NC, O |= C v A iff H |= C v A.
If D is of the form D1 u ... u Dn then we know that
there is Di, 1 ≤ i ≤ n, such that C v Di is a positive
counterexample. By (‡) we can assume this conjunct to
be of the form ∃r.F . Now, we make a case distinction:
1. If C has a conjunct ∃r.F ′ such that O |= F ′ v F then

we can apply this lemma with F ′ v F as positive
counterexample. Notice that H 6|= F ′ v F , because
if not then C v ∃r.F would not be a positive coun-
terexample.

2. Otherwise, by Lemma 3 and (‡), there is a concept
name A ∈ ΣO ∩ NC such that A v ∃r.F is a positive
counterexample.

Since each time case 1 happens the concept expression
C is strictly smaller, this can happen at most |C| times.
This means that either (a) or (b) happens or there is
a concept name A such that A v ∃r.F is a positive
counterexample, where ∃r.F is a conjunct of D. In all
cases the lemma holds.

Lemma 5. Given a positive counterexample A v C for
O relative to H, one can construct a positive counterex-
ample A′ v C ′ such that |∆IC′ | ≤ |∆ICO |, where CO is
the largest concept expression in O, in polynomial time
in |H|, |C| and |ΣO|.
Proof. Let A v C be a positive counterexample for O
relative to H. We exhaustively apply the rules concept
saturation for O, sibling merging for O and decomposi-
tion on the right for O, which rely on posing membership
queries to the oracle.
We can see that the number of rule applications is

bounded by |C|2 ·|ΣO|. The fact that A v C is a positive
counterexample for O relative to H is straightforward
for the first two rules. If A v C is replaced by A v C ′
then |= C ′ v C. Hence H 6|= A v C ′. Regarding the
rule decomposition on the right for O, we have {A v
C|−d′↓, A

′ v ∃r.C ′} |= A v C. Thus, one of the inclusions
A v C|−d′↓ and A′ v ∃r.C ′ is not entailed by H, and
this is the concept inclusion resulting from the rule
application. It remains to show that A v C is such that
|∆IC | ≤ |∆ICO |. The proof follows the same lines of
Lemma 4 in (Konev et al. 2014), which we briefly sketch
here. First we define

AO = {A} ∪ {D | O |= A v B,B v D ∈ O}
and construct the canonical model ID0,O of D0 =d

D∈AO D and O. The interpretation ID0,O has the fol-
lowing properties:

1. for every EL concept expression F : ρD0 ∈ F ID0,O iff
O |= A v F ;

2. for any d ∈ ∆ID0 and EL concept expression of the
form F = ∃r.F ′: if there exists a homomorphism h
from the labeled tree corresponding to F into ID0,O
such that h(aF ) = d and all nodes in the labeled tree
corresponding to F ′ are mapped to ∆ID0,O \ ∆ID0 ,
then there exists a concept name E with d ∈ EID0

such that O |= E v F .
Then, one can show that there is an injective homomor-
phism h from the labeled tree TC of C into the restriction
J of ID0,O to ∆I0 which maps aC to ρD0 . By definition
of AO, there is B v D ∈ O such that |∆IC | ≤ |∆ID |,
which means that |∆IC | ≤ |∆ICO |, where CO is the
largest concept expression in O. The main observation
here is that the argument holds for EL terminologies,
that is, in the presence of concept inclusions of the form
C v A. Such inclusions do not interfere in the argument
since concept saturation ensures that nodes have all
concept names implied by O in their labels.

Lemma 6. Given a positive counterexample C v A for
O relative to H, one can construct a positive counterex-
ample C ′ v A′ such that |∆IC′ | ≤ |∆ICO |, where CO is
the largest concept expression in O, in polynomial time
in |H|, |C| and |ΣO|.
Proof. Let C v A be a positive counterexample for O
relative to H. We exhaustively apply the rules concept
saturation for H, and decomposition on the left for O,
which rely on posing membership queries to the oracle.

We can see that the number of rule applications is
bounded by |C| · |ΣO|. The fact that C v A is a positive
counterexample for O relative to H is straightforward
for the first rule. Regarding decomposition on the left
for O, either we take C|−d↓ v A, which means that
|= C v C|−d↓, or we take Cd v A′ such thatO |= Cd v A′
and H 6|= Cd v A′. In all cases, the resulting concept
inclusion is a positive counterexample. It remains show
that C v A is such that |∆IC | ≤ |∆ICO |.
If there is E ∈ ΣO such that O |= C v E (and

C v E is not a tautology) then there is D v E ∈ O
such that ρC ∈ DIC,O . Let (C,O)IC = {D | ∃E ∈ ΣO :
ρC ∈ DIC,O , ρC 6∈ EIC , D v E ∈ O}. Then, for all
D ∈ (C,O)IC there is a homomorphism h : ID → IC,O
mapping the root of ID to the root of IC,O. Also, there
is D′ ∈ (C,O)IC such that:
1. there is a partial homomorphism h : ID′ → IC map-

ping the root of ID′ to the root of IC , for e ∈ ∆ID′

with h(e) ∈ ∆IC ;
2. if D′ has a conjunct ∃r.F , with e1 ∈ F ID′ as the

corresponding r-successor of ρD, and h(e1) 6∈ ∆IC

then there is A ∈ NC such that ρC ∈ AIC and O |=
A v ∃r.F .

The fact that |∆IC | ≤ |∆ID′ | for some D′ v E ∈ O is a
result of the following claim.



Claim 1. For all d ∈ ∆IC , there is e ∈ ∆ID′

such that d = h(e).

Suppose to the contrary that there is d′ ∈ ∆IC

such that d′ is outside the image of h : ID′ → IC,O.
Let G = C|−d′↓ be the concept corresponding to the
result of removing the subtree rooted in d′. Since C is
concept saturated for H, If ρG ∈ D′IG,O and ρG 6∈ EIG

then this contradicts the fact that decomposition on
the left for O was exhaustively applied. To show the
contradiction, we argue that h is a homomorphism from
ID′ into the restriction IG,O of IC,O. Our construction
has the following properties:
3. for e ∈ ∆ID′ with h(e) ∈ ∆IC , h(e) ∈ ∆IG ;
4. for all d ∈ ∆IC \ {ρC}, d ∈ AIC iff d ∈ AIC,O , for all
A ∈ NC.

We obtain Point (3) by the fact that since d′ is outside
the image of h : ID′ → IC,O, all descendants of d′ are
outside the image of h : ID′ → IC,O as well. Point (4)
follows from decomposition of the left for O and concept
saturation for H.
For e ∈ ∆ID′ with h(e) ∈ ∆IC , by Points (1) and

(3), there is a partial homomorphism from ID′ to IG.
For e ∈ ∆ID′ with h(e) 6∈ ∆IC , there is e1 ∈ ∆ID′ such
that: (i) h(e1) 6∈ ∆IC ; (ii) e is in the subtree rooted in e1;
and (iii) e1 has minimal distance from ρD′ . This means
that the parent e2 of e1 is such that h(e2) ∈ ∆IC . Let
F be the concept corresponding to the subtree rooted
in e1 and let s be the role between e2 and e1. That
is, (e2, e1) ∈ sID′ . Since h(e1) 6∈ ∆IC we have that all
descendants of e1 are not mapped to ∆IC . Then, by
construction of the canonical model IC,O of C and the
EL terminology O, one can show that there is a A′ ∈ NC
such that h(e2) ∈ A′IC,O and O |= A′ v ∃s.F . So it
remains to show that h(e2) ∈ A′IG,O , for some A′ ∈ NC
such that O |= A′ v ∃s.F . We make a case distinction:
• for h(e2) 6= ρC : by Point (4), h(e2) ∈ A′IC,O implies
h(e2) ∈ A′IC . As h(e2) ∈ ∆IC , by Point (3), we
have that h(e2) ∈ ∆IG . So h(e2) ∈ A′IG , and thus,
h(e2) ∈ A′IG,O .

• for h(e2) = ρC : by Point (2), if e1 ∈ F ID′ and h(e1) 6∈
∆IC then there is a concept name A′ such that ρC ∈
A′IC and O |= A′ v ∃s.F . So ρG ∈ A′IG , which
means that ρG = h(e2) ∈ A′IG,O .

Since we showed for arbitrary e ∈ ∆ID′ with h(e) ∈ ∆IC

and h(e) 6∈ ∆IC that there is d ∈ ∆IG,O such that
d = h(e), we have that h : ID′ → IG,O is a homo-
morphism. Thus, there is D′ ∈ (C,O)IG such that
ρG ∈ D′IG,O and ρG 6∈ EIG for some D′ v E ∈ O,
which contradicts the fact that decomposition on the
left for O was exhaustively applied, so our claim follows.

Lemma 7 is used to show Theorem 2.
Lemma 7. [Adaptation of (Konev et al. 2014) ] Assume
that A v C1 and A v C2 are right O-essential. Then

one can construct a right O-essential A v C such that
∅ |= C v C1 u C2 in polynomial time in |C1|+ |C2|.
Proof. If A v C1 and A v C2 are right O-essential then
one can show following the same lines of Lemma 30 of
(Konev et al. 2014) that A v C1uC2 is concept saturated
and decomposed on the right. The only rule which can
be applicable is sibling merging. To construct the desired
A v C, one has to exhaustively apply sibling merging.
Again following the same lines of Lemma 2 of (Konev
et al. 2014), one can show that the resulting inclusion
is concept saturated and decomposed on the right after
applying sibling merging. Again the main observation
here is that this lemma holds for EL terminologies, which
may have concept inclusions of the form C v A. As we
already mentioned, such inclusions do not interfere in the
argument since concept saturation ensures that nodes
have all concept names implied by O in their labels.


